3 standard reflections every 100

H atoms treated by a mixture of

independent and constrained

intensity decay: 0.02%

 $R_{\rm int} = 0.006$

reflections

refinement $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\min} = -0.14 \text{ e} \text{ Å}^{-3}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-Ethyl (2Z)-3-{2-[(Z)-4-ethoxy-4oxobut-2-en-2-ylamino]cyclohexylamino}but-2-enoate

Mohamed Anoir Harrad,^a Brahim Boualy,^a Mustapha Ait Ali,^a Larbi El Firdoussi^a and Corrado Rizzoli^{b*}

^aEquipe de Chimie de Coordination et Catalyse, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and ^bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy Correspondence e-mail: corrado.rizzoli@unipr.it

Received 20 April 2011; accepted 22 April 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.034; wR factor = 0.106; data-to-parameter ratio = 15.4

The asymmetric unit of the title compound, $C_{18}H_{30}N_2O_4$, contains two independent molecules. In each molecule, the cyclohexane ring adopts a chair conformation with equatorial orientation of the substituents, and the conformation is stabilized by two intramolecular N-H···O hydrogen bonds, forming rings of S(6) graph-set motif. One ethoxy group and one ethyl group are disordered over two sets of sites with refined occupancy ratios of 0.704 (2):0.296 (2) and 0.505 (3):0.495 (3), respectively. In the crystal, a weak intermolecular $C-H \cdots O$ hydrogen interaction is observed, involving the O atom of the major component of the disordered ethoxy group.

Related literature

For the synthesis and applications of β -enaminoesters, see: Spivey et al. (2003); Eddington et al. (2003); Elaridi, Thaqi et al. (2005); Cornils & Herrmann (1996); Venter et al. (2009); Elaridi, Jackson & Robinson (2005); Harrad et al. (2010). For related structures, see: McCann et al. (2001); Huang et al. (2008). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{18}H_{30}N_2O_4$	$\gamma = 114.048 \ (5)^{\circ}$
$M_r = 338.44$	V = 1969.1 (3) Å ³
Triclinic, P1	Z = 4
a = 11.1424 (9) Å	Cu $K\alpha$ radiation
b = 12.7445 (6) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 16.3298 (11) Å	T = 294 K
$\alpha = 90.904 \ (6)^{\circ}$	$0.18 \times 0.15 \times 0.10 \text{ mm}$
$\beta = 109.222 \ (6)^{\circ}$	

Data collection

Siemens AED diffractometer 7461 measured reflections 7189 independent reflections 5826 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.106$	
S = 1.16	
7189 reflections	
467 parameters	
8 restraints	

Table T			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1$ $N2 - H2N \cdots O3$ $N3 - H3N \cdots O5$ $N4 - H4N \cdots O7$ $C4 - H4A \cdots O6A^{i}$	0.850 (13) 0.865 (12) 0.846 (17) 0.811 (17) 0.97	2.048 (14) 2.009 (12) 2.018 (15) 2.112 (15) 2.48	2.754 (2) 2.720 (2) 2.724 (2) 2.754 (2) 3.400 (3)	140.1 (12) 138.7 (13) 140.3 (12) 136.1 (14) 158

Symmetry code: (i) x + 1, y + 1, z.

Data collection: AED (Belletti et al., 1993); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2371).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Cornils, B. & Herrmann, W. A. (1996). Editors. Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook, pp. 412-413. Weinheim: VCH.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). *Eur. J. Med. Chem.* 38, 49–64.
- Elaridi, J., Jackson, W. R. & Robinson, A. J. (2005). *Tetrahedron Asymmetry*, 16, 2025–2029.

Elaridi, J., Thaqi, A., Prosser, A., Jackson, W. R. & Robinson, A. J. (2005). *Tetrahedron Asymmetry*, **16**, 1309–1319.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.
- Huang, C.-H., Hsueh, L.-F., Kuo, P.-C., Lee, H. M., Uno, C.-L., Huang, J.-H., Tu, C.-Y., Hu, C.-H., Lee, G.-H. & Hung, C.-H. (2008). *Eur. J. Inorg. Chem.* pp. 3000–3008.
- Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.
- McCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, **20**, 2799–2806.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spivey, A. C., Srikaran, R., Diaper, C. M. & Turner, D. J. (2003). Org. Biomol. Chem. 1, 1638–1840.
- Venter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1606-m1607.

Acta Cryst. (2011). E67, o1269-o1270 [doi:10.1107/S1600536811015248]

rac-Ethyl (2Z)-3-{2-[(Z)-4-ethoxy-4-oxobut-2-en-2-ylamino]cyclohexylamino}but-2-enoate

M. A. Harrad, B. Boualy, M. A. Ali, L. E. Firdoussi and C. Rizzoli

Comment

 β -Enaminoesters have been extensively studied because of their applications in pharmaceutical, biochemical, biomedical and immunochemical research (Spivey *et al.*, 2003; Eddington *et al.*, 2003). These compounds are also used as precursors for the preparation of a large number of heterocyclic derivatives (Elaridi, Thaqi *et al.*, 2005) and novel organometallic complexes (Cornils & Herrmann, 1996; Venter *et al.*, 2009). Furthermore, chiral β -amino acid derivatives were prepared by enantioselective hydrogenation of β -enaminoesters (Elaridi, Jackson & Robinson, 2005). In the course of our studies in this field, we have recently reported an efficient method for the synthesis of various β -enaminoesters (Harrad *et al.*, 2010). Following our catalysis objective on the coupling of amines and keto-ester compounds, we describe herein the crystal structure of a new β -enaminoester which has been prepared using our previously mentioned method by the dicondensation of trans-cyclohexane-1,2-diamine with 3-oxo-butyric acid ethyl ester under solvent-free conditions.

The asymmetric unit of the title compound (Fig. 1) consists of two independent molecules differing mainly in the orientation of the aminobutenoate groups (Fig. 2), as indicated by the dihedral angles of 82.23 (3) and 51.57 (3)° between the mean planes through N1/O1/O2/C8—C10 and N2/O3/O4/C13—C16 in one molecule, and through N3/O5/O6A/O6B/ C25—C28 and N4/O7/O8/C31—C24 in the other molecule. The molecular conformations, where the substituents are equatorially oriented with respect to the cyclohexane rings, are similar to those observed for the related compound *trans-N,N*bis(4-oxopent-2-en-2-yl)-1,2-diaminocyclohexane (McCann *et al.*, 2001; Huang *et al.*, 2009). In each aminobutenoate group an intramolecular N—H···O hydrogen bond (Table 1) is present, forming a ring of S(6) graph-set motif (Bernstein *et al.*, 1995). The cyclohexane rings adopt a chair conformations with puckering parameters Q, θ and φ (Cremer & Pople, 1975) of 0.5691 (11) Å, 179.21 (19)°, -105 (8)° and 0.5723 (15) Å, 178.86 (15)°, -67 (8)° for rings C1–C6 and C19–C24, respectively. In one molecule, the O6/C29–C30 ethoxy group and the C35–C36 ethyl group are disordered over two orientations with refined site occupancy ratios of 0.704 (2):0.296 (2) and 0.505 (3):0.495 (3), respectively. In the crystal structure (Fig. 3), one weak C—H···O hydrogen bond (Table 1) is observed, involving the oxygen atom of the major component of the disordered ethoxy group as acceptor.

Experimental

To a stirred mixture of 3-oxo-butyric acid ethyl ester (1.7 mmol), *trans*-cyclohexane-1,2-diamine (0.85 mmol) and Ca(CF₃COO)₂ (0.17 mmol) at room temperature 10 ml of distilled water was added, and the residue extracted with diethyl ether (3 × 25 ml). The organic layer was dried over Na₂SO₄ and the solvent removed under reduced pressure. The title β -enaminoester was obtained by column chromatography over silica gel using a mixture of *n*-hexane/ethyl acetate (5:95 ν/ν) as eluent (yield 90%; m. p. 160 °C). Crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent at room temperature.

Refinement

The amine H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. One ethoxy group (O6/C29–C30) and one ethyl group (C35–C36) are disordered over two orientations (called A and B) with refined site occupancy ratios of 0.704 (2):0.296 (2) and 0.505 (3):0.495 (3), respectively. During the refinement, the O—C and C—C bond distances within the disordered groups were restrained to be 1.45 (1) and 1.49 (1) Å, respectively, and the anisotropic displacement parameters of the pairs of the disordered atoms were set equal by the command EADP (Sheldrick, 2008).

Figures

Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Only the major components of disorder are shown.

Fig. 2. Comparison of the conformations of the two independent molecules of the title compound.

Fig. 3. Crystal packing of the title compound with intra- and intermolecular hydrogen bonds shown as dashed lines.

rac-Ethyl (2Z)-3-{2-[(Z)-4-ethoxy- 4-oxobut-2-en-2-ylamino]cyclohexylamino}but-2-enoate

Crystal data	
$C_{18}H_{30}N_2O_4$	Z = 4
$M_r = 338.44$	F(000) = 736
Triclinic, <i>P</i> T	$D_{\rm x} = 1.142 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
a = 11.1424 (9) Å	Cell parameters from 48 reflections
b = 12.7445 (6) Å	$\theta = 18.4 - 29.8^{\circ}$
c = 16.3298 (11) Å	$\mu = 0.65 \text{ mm}^{-1}$
$\alpha = 90.904 \ (6)^{\circ}$	T = 294 K
$\beta = 109.222 \ (6)^{\circ}$	Irregular block, colourless
$\gamma = 114.048 \ (5)^{\circ}$	$0.18 \times 0.15 \times 0.10 \text{ mm}$

V = 1969.1 (3) Å³

Data collection

Siemens AED diffractometer	$R_{\rm int} = 0.006$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 68.0^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
graphite	$h = -13 \rightarrow 12$
$\theta/2\theta$ scans	$k = -15 \rightarrow 9$
7461 measured reflections	$l = -18 \rightarrow 19$
7189 independent reflections	3 standard reflections every 100 reflections
5826 reflections with $I > 2\sigma(I)$	intensity decay: 0.02%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.106$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0604P)^{2} + 0.0296P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
7189 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
467 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
8 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0100 (5)

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

E		1:					1:	1		1 82	í٦
Fractional	atomic	coorainales	ana isoire	opic or e	quivaieni	isotropic	: aisp	lacement	parameters	(A)	J

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.65218 (9)	0.84797 (6)	0.08853 (5)	0.0814 (2)	
O2	0.58185 (10)	0.74147 (7)	-0.04449 (5)	0.0864 (2)	
03	0.11165 (8)	0.64888 (7)	0.18740 (5)	0.0774 (2)	
O4	-0.03250 (9)	0.73472 (8)	0.13437 (6)	0.0912 (3)	
05	-0.19007 (10)	0.18776 (8)	0.38766 (5)	0.0895 (3)	
O6A	-0.1211 (2)	0.10330 (16)	0.50344 (14)	0.0829 (5)	0.704 (2)
O6B	-0.0647 (6)	0.1425 (4)	0.5121 (4)	0.0829 (5)	0.296 (2)
O7	0.34330 (8)	0.27768 (7)	0.26921 (6)	0.0846 (2)	
08	0.52581 (9)	0.38869 (8)	0.39309 (7)	0.0963 (3)	

N1	0.55037 (10)	0.72198 (8)	0.20595 (6)	0.0684 (2)
H1N	0.5994 (13)	0.7854 (12)	0.1927 (8)	0.082 (4)*
N2	0.38841 (10)	0.79819 (8)	0.27442 (7)	0.0727 (2)
H2N	0.3211 (14)	0.7281 (12)	0.2553 (8)	0.084 (4)*
N3	-0.13927 (10)	0.13606 (8)	0.24363 (6)	0.0687 (2)
H3N	-0.1697 (13)	0.1707 (11)	0.2705 (8)	0.080 (4)*
N4	0.11045 (10)	0.32223 (9)	0.23049 (6)	0.0719 (2)
H4N	0.1472 (13)	0.2852 (11)	0.2165 (8)	0.082 (4)*
C1	0.55684 (11)	0.71559 (9)	0.29601 (6)	0.0635 (2)
H1	0.4829	0.6400	0.2960	0.076*
C2	0.69934 (12)	0.72291 (10)	0.35581 (8)	0.0756 (3)
H2A	0.7131	0.6592	0.3338	0.091*
H2B	0.7744	0.7955	0.3542	0.091*
C3	0.70863 (14)	0.71697 (11)	0.45078 (8)	0.0846 (3)
H3A	0.6395	0.6415	0.4536	0.102*
H3B	0.8018	0.7256	0.4871	0.102*
C4	0.68137 (14)	0.81250 (11)	0.48572 (8)	0.0863 (3)
H4A	0.7565	0.8879	0.4890	0.104*
H4B	0.6816	0.8045	0.5447	0.104*
C5	0.53939 (13)	0.80654 (11)	0.42641 (8)	0.0819 (3)
H5A	0.4639	0.7346	0.4285	0.098*
H5B	0.5272	0.8710	0.4487	0.098*
C6	0.52777 (11)	0.81168 (9)	0.33084 (7)	0.0664 (2)
H6	0.5987	0.8876	0.3285	0.080*
C7	0.48965 (10)	0.63196 (8)	0.13905 (6)	0.0608 (2)
C8	0.40309 (15)	0.51312 (10)	0.15353 (9)	0.0937 (4)
H8A	0.4628	0.4896	0.1987	0.141*
H8B	0 3609	0 4582	0.0998	0 141*
H8C	0.3302	0.5155	0.1714	0.141*
C9	0.50447 (10)	0.64528 (9)	0.05978 (7)	0.0648 (2)
H9	0.4586	0 5793	0.0162	0.078*
C10	0 58526 (11)	0.75309 (9)	0.03918(7)	0.0655 (2)
C11	0.65923 (17)	0.84598(13)	-0.07360(9)	0.00000(2)
H11A	0.6510	0.9113	-0.0488	0.117*
H11B	0.6176	0.8358	-0.1372	0.117*
C12	0.80800 (10)	0.87259 (17)	-0.04739(13)	0.1255 (6)
H12A	0.8566	0.07257(17)	-0.0674	0.1235 (0)
H12R	0.8500	0.8091	-0.0732	0.188*
H12D	0.8508	0.8836	0.0156	0.188*
C13	0.34359 (13)	0.88007 (10)	0.25302 (8)	0.100 0.0770(3)
C14	0.54557(15) 0.45322(18)	1,00673(12)	0.23352(0)	0.0775(3) 0.1315(7)
H14A	0.4072	1.00073 (12)	0.23001 (13)	0.107*
H14A	0.5175	1.0372	0.2531	0.197
HI4D	0.5175	1.0224	0.2351	0.197*
C15	0.3040 0.20513 (13)	0.85458 (10)	0.3439 0.20757 (7)	0.197
U15	0.20313 (13)	0.05450 (10)	0.20737 (7)	0.0793 (3)
C16	0.1003	0.7137	0.1701 0.17740 (7)	0.095
C10 C17	-0.15022(12)	0.73077(10) 0.61054(12)	0.1/(47)(/)	0.0079(3)
	-0.13032(13)	0.01934 (12)	0.10095 (8)	0.0078(4)
п1/А	-0.1213	0.3089	0.0/3/	0.105*

H17B	-0.2272	0.6252	0.0544	0.105*	
C18	-0.20206 (15)	0.56635 (16)	0.17051 (10)	0.1087 (5)	
H18A	-0.2798	0.4907	0.1452	0.163*	
H18B	-0.2327	0.6153	0.1950	0.163*	
H18C	-0.1270	0.5587	0.2161	0.163*	
C19	-0.13341 (11)	0.16744 (9)	0.15936 (7)	0.0646 (2)	
H19	-0.0979	0.1202	0.1354	0.077*	
C20	-0.28197 (12)	0.14077 (10)	0.09474 (7)	0.0760 (3)	
H20A	-0.3426	0.0579	0.0856	0.091*	
H20B	-0.3214	0.1824	0.1197	0.091*	
C21	-0.27846 (14)	0.17667 (11)	0.00643 (8)	0.0837 (3)	
H21A	-0.2467	0.1302	-0.0209	0.100*	
H21B	-0.3730	0.1616	-0.0324	0.100*	
C22	-0.18062 (14)	0.30461 (12)	0.01838 (8)	0.0833 (3)	
H22A	-0.2169	0.3513	0.0410	0.100*	
H22B	-0.1776	0.3245	-0.0382	0.100*	
C23	-0.03151 (13)	0.33309 (12)	0.08190 (8)	0.0817 (3)	
H23A	0.0276	0.4162	0.0908	0.098*	
H23B	0.0085	0.2926	0.0565	0.098*	
C24	-0.03252 (11)	0.29689 (9)	0.17064 (7)	0.0652 (2)	
H24	-0.0665	0.3432	0.1971	0.078*	
C25	-0.07559 (10)	0.07824 (8)	0.29520 (7)	0.0607 (2)	
C26	-0.00907 (14)	0.01806 (11)	0.25829 (8)	0.0788 (3)	
H26A	0.0647	0.0746	0.2427	0.118*	
H26B	-0.0793	-0.0381	0.2069	0.118*	
H26C	0.0300	-0.0209	0.3017	0.118*	
C27	-0.07262 (11)	0.07126 (9)	0.37959 (7)	0.0654 (2)	
H27	-0.0317	0.0267	0.4114	0.078*	
C28	-0.12888 (13)	0.12870 (9)	0.42072 (7)	0.0725 (3)	
C29A	-0.1870 (3)	0.14951 (19)	0.54811 (14)	0.0902 (5)	0.704 (2)
H29A	-0.2160	0.0993	0.5888	0.108*	0.704 (2)
H29B	-0.2707	0.1505	0.5052	0.108*	0.704 (2)
C30A	-0.0877 (3)	0.2695 (2)	0.59710 (16)	0.1157 (7)	0.704 (2)
H30A	-0.1333	0.2985	0.6259	0.174*	0.704 (2)
H30B	-0.0598	0.3194	0.5568	0.174*	0.704 (2)
H30C	-0.0056	0.2683	0.6403	0.174*	0.704 (2)
C29B	-0.0883 (6)	0.2124 (5)	0.5686 (3)	0.0902 (5)	0.296 (2)
H29C	-0.0699	0.2880	0.5509	0.108*	0.296 (2)
H29D	-0.0242	0.2246	0.6288	0.108*	0.296 (2)
C30B	-0.2357 (7)	0.1538 (6)	0.5640 (4)	0.1157 (7)	0.296 (2)
H30D	-0.2509	0.2013	0.6020	0.174*	0.296 (2)
H30E	-0.2532	0.0796	0.5824	0.174*	0.296 (2)
H30F	-0.2988	0.1424	0.5045	0.174*	0.296 (2)
C31	0.18551 (11)	0.39366 (9)	0.30854 (7)	0.0653 (2)	
C32	0.11850 (15)	0.45730 (13)	0.34209 (8)	0.0911 (4)	
H32A	0.0876	0.5000	0.2987	0.137*	
H32B	0.1863	0.5105	0.3955	0.137*	
H32C	0.0389	0.4020	0.3535	0.137*	
C33	0.32099 (11)	0.41186 (9)	0.35799 (7)	0.0692 (3)	

H33	0.3689	0.4659	0.4101	0.083*	
C34	0.39224 (11)	0.35293 (9)	0.33421 (8)	0.0701 (3)	
C35A	0.6064 (10)	0.3370 (8)	0.3684 (8)	0.1107 (14)	0.505 (3)
H35A	0.5625	0.3052	0.3059	0.133*	0.505 (3)
H35B	0.6079	0.2739	0.4005	0.133*	0.505 (3)
C36A	0.7530 (4)	0.4278 (3)	0.3891 (3)	0.1138 (9)	0.505 (3)
H36A	0.8069	0.3938	0.3736	0.171*	0.505 (3)
H36B	0.7958	0.4591	0.4509	0.171*	0.505 (3)
H36C	0.7510	0.4891	0.3561	0.171*	0.505 (3)
C35B	0.6115 (10)	0.3321 (9)	0.3864 (8)	0.1107 (14)	0.495 (3)
H35C	0.5535	0.2491	0.3655	0.133*	0.495 (3)
H35D	0.6832	0.3434	0.4435	0.133*	0.495 (3)
C36B	0.6779 (4)	0.3848 (3)	0.3239 (3)	0.1138 (9)	0.495 (3)
H36D	0.7310	0.3454	0.3148	0.171*	0.495 (3)
H36E	0.7401	0.4658	0.3472	0.171*	0.495 (3)
H36F	0.6062	0.3777	0.2688	0.171*	0.495 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0996 (6)	0.0589 (4)	0.0826 (5)	0.0259 (4)	0.0411 (4)	0.0138 (4)
O2	0.1099 (6)	0.0779 (5)	0.0716 (5)	0.0353 (5)	0.0407 (4)	0.0190 (4)
O3	0.0683 (4)	0.0726 (5)	0.0910 (5)	0.0352 (4)	0.0234 (4)	0.0129 (4)
O4	0.0796 (5)	0.0919 (6)	0.0928 (6)	0.0482 (5)	0.0072 (4)	0.0111 (4)
05	0.1190 (7)	0.1038 (6)	0.0856 (5)	0.0769 (6)	0.0486 (5)	0.0328 (5)
O6A	0.1189 (17)	0.0739 (12)	0.0744 (7)	0.0502 (11)	0.0471 (12)	0.0226 (9)
O6B	0.1189 (17)	0.0739 (12)	0.0744 (7)	0.0502 (11)	0.0471 (12)	0.0226 (9)
O7	0.0722 (5)	0.0796 (5)	0.0976 (6)	0.0342 (4)	0.0253 (4)	0.0048 (4)
08	0.0653 (5)	0.0818 (5)	0.1212 (7)	0.0336 (4)	0.0085 (4)	-0.0023 (5)
N1	0.0743 (5)	0.0544 (5)	0.0685 (5)	0.0177 (4)	0.0301 (4)	0.0123 (4)
N2	0.0631 (5)	0.0594 (5)	0.0851 (6)	0.0232 (4)	0.0194 (4)	0.0076 (4)
N3	0.0763 (6)	0.0798 (6)	0.0707 (5)	0.0477 (5)	0.0340 (4)	0.0227 (4)
N4	0.0635 (5)	0.0806 (6)	0.0752 (6)	0.0370 (5)	0.0231 (4)	0.0075 (5)
C1	0.0623 (5)	0.0550 (5)	0.0642 (5)	0.0178 (4)	0.0227 (4)	0.0114 (4)
C2	0.0709 (6)	0.0699 (6)	0.0818 (7)	0.0314 (5)	0.0220 (5)	0.0158 (5)
C3	0.0831 (8)	0.0752 (7)	0.0766 (7)	0.0302 (6)	0.0122 (6)	0.0179 (6)
C4	0.0909 (8)	0.0780 (7)	0.0644 (6)	0.0235 (6)	0.0152 (6)	0.0080 (5)
C5	0.0844 (8)	0.0805 (7)	0.0737 (7)	0.0289 (6)	0.0302 (6)	0.0055 (5)
C6	0.0609 (5)	0.0579 (5)	0.0688 (6)	0.0187 (4)	0.0194 (5)	0.0080 (4)
C7	0.0515 (5)	0.0560 (5)	0.0645 (5)	0.0194 (4)	0.0144 (4)	0.0089 (4)
C8	0.1030 (9)	0.0618 (7)	0.0816 (8)	0.0023 (6)	0.0360 (7)	0.0035 (5)
C9	0.0624 (6)	0.0586 (5)	0.0640 (6)	0.0223 (4)	0.0173 (4)	0.0070 (4)
C10	0.0709 (6)	0.0646 (6)	0.0658 (6)	0.0342 (5)	0.0248 (5)	0.0148 (5)
C11	0.1316 (12)	0.0907 (9)	0.0856 (8)	0.0509 (9)	0.0557 (8)	0.0361 (7)
C12	0.1146 (13)	0.1228 (13)	0.1317 (14)	0.0328 (10)	0.0597 (11)	0.0457 (11)
C13	0.0854 (7)	0.0616 (6)	0.0734 (7)	0.0286 (5)	0.0176 (6)	0.0133 (5)
C14	0.1176 (12)	0.0606 (8)	0.1555 (15)	0.0270 (8)	-0.0074 (11)	0.0155 (8)
C15	0.0893 (8)	0.0714 (7)	0.0753 (7)	0.0441 (6)	0.0156 (6)	0.0138 (5)

C16	0.0733 (6)	0.0781 (7)	0.0618 (6)	0.0411 (6)	0.0186 (5)	0.0114 (5)
C17	0.0700 (7)	0.1016 (9)	0.0771 (7)	0.0386 (7)	0.0084 (6)	0.0057 (6)
C18	0.0777 (8)	0.1517 (14)	0.0942 (9)	0.0514 (9)	0.0268 (7)	0.0191 (9)
C19	0.0687 (6)	0.0691 (6)	0.0656 (6)	0.0388 (5)	0.0250 (5)	0.0139 (5)
C20	0.0694 (6)	0.0742 (7)	0.0768 (7)	0.0324 (5)	0.0167 (5)	0.0085 (5)
C21	0.0901 (8)	0.0898 (8)	0.0687 (6)	0.0505 (7)	0.0123 (6)	0.0086 (6)
C22	0.0974 (8)	0.0956 (8)	0.0738 (7)	0.0589 (7)	0.0297 (6)	0.0291 (6)
C23	0.0850 (8)	0.0902 (8)	0.0843 (7)	0.0467 (7)	0.0369 (6)	0.0329 (6)
C24	0.0631 (6)	0.0708 (6)	0.0684 (6)	0.0358 (5)	0.0237 (5)	0.0129 (5)
C25	0.0551 (5)	0.0535 (5)	0.0707 (6)	0.0238 (4)	0.0196 (4)	0.0098 (4)
C26	0.0933 (8)	0.0823 (7)	0.0818 (7)	0.0561 (7)	0.0344 (6)	0.0194 (6)
C27	0.0709 (6)	0.0588 (5)	0.0686 (6)	0.0329 (5)	0.0223 (5)	0.0141 (4)
C28	0.0880 (7)	0.0653 (6)	0.0714 (6)	0.0385 (6)	0.0314 (5)	0.0177 (5)
C29A	0.1123 (16)	0.0960 (15)	0.0813 (11)	0.0553 (12)	0.0459 (12)	0.0170 (10)
C30A	0.1343 (18)	0.1182 (16)	0.1043 (15)	0.0694 (14)	0.0388 (13)	-0.0099 (12)
C29B	0.1123 (16)	0.0960 (15)	0.0813 (11)	0.0553 (12)	0.0459 (12)	0.0170 (10)
C30B	0.1343 (18)	0.1182 (16)	0.1043 (15)	0.0694 (14)	0.0388 (13)	-0.0099 (12)
C31	0.0716 (6)	0.0657 (6)	0.0641 (6)	0.0310 (5)	0.0297 (5)	0.0196 (5)
C32	0.0950 (9)	0.1066 (10)	0.0821 (8)	0.0563 (8)	0.0301 (7)	0.0042 (7)
C33	0.0715 (6)	0.0686 (6)	0.0658 (6)	0.0298 (5)	0.0238 (5)	0.0167 (5)
C34	0.0623 (6)	0.0603 (6)	0.0805 (7)	0.0228 (5)	0.0225 (5)	0.0189 (5)
C35A	0.0754 (10)	0.0835 (10)	0.157 (4)	0.0428 (8)	0.0135 (18)	0.0046 (19)
C36A	0.102 (2)	0.0986 (19)	0.163 (3)	0.0561 (17)	0.0601 (18)	0.0378 (19)
C35B	0.0754 (10)	0.0835 (10)	0.157 (4)	0.0428 (8)	0.0135 (18)	0.0046 (19)
C36B	0.102 (2)	0.0986 (19)	0.163 (3)	0.0561 (17)	0.0601 (18)	0.0378 (19)

Geometric parameters (Å, °)

O1C10	1.2273 (12)	С15—Н15	0.9300
O2—C10	1.3584 (13)	C17—C18	1.490 (2)
O2—C11	1.4482 (15)	C17—H17A	0.9700
O3—C16	1.2272 (13)	C17—H17B	0.9700
O4—C16	1.3605 (13)	C18—H18A	0.9600
O4—C17	1.4520 (16)	C18—H18B	0.9600
O5—C28	1.2294 (13)	C18—H18C	0.9600
O6A—C28	1.377 (2)	C19—C20	1.5327 (14)
O6A—C29A	1.453 (3)	C19—C24	1.5368 (15)
O6B—C28	1.398 (6)	С19—Н19	0.9800
O6B—C29B	1.429 (6)	C20—C21	1.5277 (16)
O7—C34	1.2264 (14)	C20—H20A	0.9700
O8—C34	1.3558 (13)	С20—Н20В	0.9700
O8—C35B	1.439 (7)	C21—C22	1.5121 (19)
O8—C35A	1.455 (7)	C21—H21A	0.9700
N1—C7	1.3448 (13)	C21—H21B	0.9700
N1—C1	1.4538 (13)	C22—C23	1.5264 (17)
N1—H1N	0.850 (13)	C22—H22A	0.9700
N2—C13	1.3435 (14)	С22—Н22В	0.9700
N2—C6	1.4577 (13)	C23—C24	1.5298 (14)
N2—H2N	0.865 (13)	C23—H23A	0.9700

N3—C25	1.3446 (13)	С23—Н23В	0.9700
N3—C19	1.4537 (13)	C24—H24	0.9800
N3—H3N	0.847 (13)	C25—C27	1.3727 (14)
N4—C31	1.3392 (14)	C25—C26	1.4979 (14)
N4—C24	1.4639 (13)	C26—H26A	0.9600
N4—H4N	0.811 (13)	C26—H26B	0.9600
C1—C2	1.5293 (14)	C26—H26C	0.9600
C1—C6	1.5332 (15)	C27—C28	1.4197 (15)
C1—H1	0.9800	С27—Н27	0.9300
C2—C3	1.5251 (16)	C29A—C30A	1.484 (3)
C2—H2A	0.9700	С29А—Н29А	0.9700
C2—H2B	0.9700	С29А—Н29В	0.9700
C3—C4	1.5145 (18)	C30A—H30A	0.9600
С3—НЗА	0.9700	C30A—H30B	0.9600
С3—НЗВ	0.9700	C30A—H30C	0.9600
C4—C5	1.5288 (18)	C29B—C30B	1.475 (7)
C4—H4A	0.9700	C29B—H29C	0.9700
C4—H4B	0.9700	C29B—H29D	0.9700
C5—C6	1.5277 (15)	C30B—H30D	0.9600
С5—Н5А	0.9700	С30В—Н30Е	0.9600
С5—Н5В	0.9700	C30B—H30F	0.9600
С6—Н6	0.9800	C31—C33	1.3751 (15)
С7—С9	1.3626 (14)	C31—C32	1.5048 (15)
С7—С8	1.5003 (15)	С32—Н32А	0.9600
C8—H8A	0.9600	С32—Н32В	0.9600
С8—Н8В	0.9600	С32—Н32С	0.9600
C8—H8C	0.9600	C33—C34	1.4231 (15)
C9—C10	1.4202 (14)	С33—Н33	0.9300
С9—Н9	0.9300	C35A—C36A	1.485 (9)
C11—C12	1.465 (2)	С35А—Н35А	0.9700
C11—H11A	0.9700	С35А—Н35В	0.9700
C11—H11B	0 9700	C36A—H36A	0.9600
C12—H12A	0 9600	C36A—H36B	0 9600
C12—H12B	0.9600	C36A—H36C	0.9600
C12—H12C	0.9600	C35B—C36B	1 468 (9)
C13—C15	1 3662 (17)	C35B—H35C	0.9700
C13—C14	1 5119 (18)	C35B—H35D	0.9700
C14—H14A	0.9600	C36B—H36D	0.9600
C14—H14B	0.9600	C36B—H36E	0.9600
C14—H14C	0.9600	C36B—H36F	0.9600
C15—C16	1 4172 (16)		0.7000
$C_{10} = C_{10}$	117.29 (10)	C20 C10 U10	109 5
C10 - 02 - C11	117.28 (10)	C20-C19-H19	108.5
C10 - 04 - C17	110.38 (9)	C24—C19—H19	108.3
$C_{20} = O(D - C_{20})$	11/.05 (18)	$C_{21} = C_{20} = C_{19}$	111.11 (10)
$C_{20} = C_{25} D_{10}$	119.8 (5)	C_{21} — C_{20} — H_{20A}	109.4
$C_{24} = O_8 = C_{254}$	121.2 (5)	C19—C20—H20A	109.4
$C_{2} = 08 - C_{2}$	114.2 (5)	C10 C20 H20B	109.4
C/—NI—CI	126.83 (9)	C19—C20—H20B	109.4
C/—NI—HIN	111.8 (8)	H20A—C20—H20B	108.0

C1—N1—H1N	120.6 (8)	C22—C21—C20	111.03 (10)
C13—N2—C6	128.79 (10)	C22—C21—H21A	109.4
C13—N2—H2N	113.1 (8)	C20-C21-H21A	109.4
C6—N2—H2N	117.7 (8)	C22—C21—H21B	109.4
C25—N3—C19	128.67 (9)	C20—C21—H21B	109.4
C25—N3—H3N	112.5 (8)	H21A—C21—H21B	108.0
C19—N3—H3N	117.2 (8)	C21—C22—C23	111.17 (10)
C31—N4—C24	128.22 (9)	C21—C22—H22A	109.4
C31—N4—H4N	115.3 (9)	C23—C22—H22A	109.4
C24—N4—H4N	116.3 (9)	C21—C22—H22B	109.4
N1—C1—C2	111.09 (9)	С23—С22—Н22В	109.4
N1—C1—C6	110.54 (8)	H22A—C22—H22B	108.0
C2—C1—C6	110.93 (8)	C22—C23—C24	111.12 (9)
N1—C1—H1	108.0	С22—С23—Н23А	109.4
C2—C1—H1	108.0	С24—С23—Н23А	109.4
C6—C1—H1	108.0	С22—С23—Н23В	109.4
C3—C2—C1	111.95 (9)	С24—С23—Н23В	109.4
C3—C2—H2A	109.2	H23A—C23—H23B	108.0
C1—C2—H2A	109.2	N4—C24—C23	110.76 (9)
C3—C2—H2B	109.2	N4—C24—C19	110.83 (8)
C1—C2—H2B	109.2	C23—C24—C19	111.46 (9)
H2A—C2—H2B	107.9	N4—C24—H24	107.9
C4—C3—C2	110.45 (10)	C23—C24—H24	107.9
С4—С3—НЗА	109.6	C19—C24—H24	107.9
С2—С3—НЗА	109.6	N3—C25—C27	121.75 (9)
С4—С3—Н3В	109.6	N3—C25—C26	118.67 (9)
С2—С3—Н3В	109.6	C27—C25—C26	119.57 (9)
НЗА—СЗ—НЗВ	108.1	C25—C26—H26A	109.5
C3—C4—C5	111.02 (10)	С25—С26—Н26В	109.5
C3—C4—H4A	109.4	H26A—C26—H26B	109.5
С5—С4—Н4А	109.4	С25—С26—Н26С	109.5
C3—C4—H4B	109.4	H26A—C26—H26C	109.5
C5—C4—H4B	109.4	H26B—C26—H26C	109.5
H4A—C4—H4B	108.0	C25—C27—C28	123.28 (9)
C6—C5—C4	112.53 (10)	С25—С27—Н27	118.4
C6—C5—H5A	109.1	С28—С27—Н27	118.4
C4—C5—H5A	109.1	O5—C28—O6A	120.10 (13)
С6—С5—Н5В	109.1	O5—C28—O6B	121.0 (2)
C4—C5—H5B	109.1	O5—C28—C27	126.94 (10)
H5A—C5—H5B	107.8	O6A—C28—C27	112.70 (12)
N2—C6—C5	111.60 (9)	O6B—C28—C27	108.9 (3)
N2—C6—C1	109.13 (8)	O6A—C29A—C30A	110.8 (2)
C5—C6—C1	110.09 (9)	O6A—C29A—H29A	109.5
N2—C6—H6	108.7	С30А—С29А—Н29А	109.5
С5—С6—Н6	108.7	O6A—C29A—H29B	109.5
С1—С6—Н6	108.7	C30A—C29A—H29B	109.5
N1—C7—C9	122.42 (9)	H29A—C29A—H29B	108.1
N1—C7—C8	118.00 (10)	C29A—C30A—H30A	109.5
C9—C7—C8	119.59 (9)	C29A—C30A—H30B	109.5

С7—С8—Н8А	109.5	H30A—C30A—H30B	109.5
С7—С8—Н8В	109.5	C29A—C30A—H30C	109.5
H8A—C8—H8B	109.5	H30A—C30A—H30C	109.5
С7—С8—Н8С	109.5	H30B—C30A—H30C	109.5
H8A—C8—H8C	109.5	O6B—C29B—C30B	109.9 (5)
H8B—C8—H8C	109.5	O6B—C29B—H29C	109.7
C7—C9—C10	124.40 (9)	C30B—C29B—H29C	109.7
С7—С9—Н9	117.8	O6B—C29B—H29D	109.7
С10—С9—Н9	117.8	C30B—C29B—H29D	109.7
O1—C10—O2	121.51 (10)	H29C—C29B—H29D	108.2
O1—C10—C9	126.35 (10)	C29B—C30B—H30D	109.5
O2—C10—C9	112.14 (9)	C29B—C30B—H30E	109.5
O2—C11—C12	112.02 (12)	H30D-C30B-H30E	109.5
O2—C11—H11A	109.2	C29B—C30B—H30F	109.5
C12—C11—H11A	109.2	H30D—C30B—H30F	109.5
O2—C11—H11B	109.2	H30E—C30B—H30F	109.5
С12—С11—Н11В	109.2	N4—C31—C33	122.59 (10)
H11A—C11—H11B	107.9	N4-C31-C32	118 16 (10)
C11—C12—H12A	109.5	$C_{33} = C_{31} = C_{32}$	119 25 (10)
C11—C12—H12B	109.5	C31—C32—H32A	109.5
H12A—C12—H12B	109.5	C31—C32—H32B	109.5
C11—C12—H12C	109.5	H32A—C32—H32B	109.5
H12A— $C12$ — $H12C$	109.5	$C_{31} - C_{32} - H_{32}C_{32}$	109.5
H12B-C12-H12C	109.5	$H_{32}A - C_{32} - H_{32}C$	109.5
N2-C13-C15	122.28 (11)	$H_{32}B = C_{32} = H_{32}C$	109.5
N2-C13-C14	117 39 (11)	$C_{31} - C_{33} - C_{34}$	123 87 (10)
C15-C13-C14	120 33 (11)	C31—C33—H33	118 1
C13—C14—H14A	109 5	C34—C33—H33	118.1
C13—C14—H14B	109.5	07	121.61 (10)
H14A—C14—H14B	109.5	07-C34-C33	126.26 (10)
C13—C14—H14C	109.5	08-C34-C33	112.13 (10)
H14A—C14—H14C	109.5	08-C35A-C36A	109.2 (6)
H14B—C14—H14C	109.5	08—C35A—H35A	109.8
C13—C15—C16	123.31 (10)	C36A—C35A—H35A	109.8
C13—C15—H15	118.3	08-C35A-H35B	109.8
C16-C15-H15	118.3	C36A—C35A—H35B	109.8
03-016-04	120.92 (10)	H35A—C35A—H35B	108.3
03-C16-C15	126.59 (10)	C35A—C36A—H36A	109.5
04-C16-C15	112.49 (10)	C35A—C36A—H36B	109.5
04	112.64 (11)	H36A—C36A—H36B	109.5
04—C17—H17A	109.1	$C_{35A} - C_{36A} - H_{36C}$	109.5
C18 - C17 - H17A	109.1	H_{36A} C_{36A} H_{36C}	109.5
04—C17—H17B	109.1	H36B—C36A—H36C	109.5
C18—C17—H17B	109.1	08—C35B—C36B	107.3 (7)
H17A—C17—H17B	107.8	08 - C35B - H35C	110.3
C17—C18—H18A	109 5	C36B—C35B—H35C	110.3
C17—C18—H18B	109.5	08—C35B—H35D	110.3
H18A—C18—H18B	109.5	C36B—C35B—H35D	110.3
C17—C18—H18C	109.5	H35C—C35B—H35D	108.5
		· · · · · · · · · · · · · · · · · · ·	

11101 G10 1110G	100 -					100 -	
H18A—C18—H18C	109.5		C35B—C:	36B—H36D		109.5	
H18B—C18—H18C	109.5		C35B—C3	36B—H36E		109.5	
N3—C19—C20	109.91 (9)		H36D—C	36B—H36E		109.5	
N3—C19—C24	110.78 (8)		C35B—C3	36B—H36F		109.5	
C20-C19-C24	110.58 (8)		H36D—C	36B—H36F		109.5	
N3—C19—H19	108.5		H36E—C3	36B—H36F		109.5	
Hydrogen-bond geometry (Å, °)							
D—H···A		<i>D</i> —Н	H····	A	$D \cdots A$		D—H…A
N1—H1N…O1		0.850 (13)	2.04	48 (14)	2.754 (2)		140.1 (12)
N2—H2N…O3		0.865 (12)	2.00	09 (12)	2.720 (2)		138.7 (13)
N3—H3N…O5		0.846 (17)	2.01	18 (15)	2.724 (2)		140.3 (12)
N4—H4N…O7		0.811 (17)	2.11	12 (15)	2.754 (2)		136.1 (14)
C4—H4A···O6A ⁱ		0.97	2.48	3	3.400 (3)		158
Symmetry codes: (i) $x+1$, $y+1$, z .							

Fig. 1

